In the Shadow of Ghost Trees: Applying Forest Ecology to Archaeological Interpretations
Marcy Reiser*, Lawrence C. Todd, Erin Parks, and Jill Bechberger Colorado State University, Department of Anthropology, Laboratory of Human Paleoecology, Fort Collins, CO 80523, USA

Abstract
Forest boundaries shift both gradually and abruptly over time as a result of such varied forces as fire, climate, pestilence, grazing, and human land use. Small scale shifts in timberline or forest boundaries can be hard to discern from the paleoecological record, yet humans, like other mammals, likely exploited the ecological diversity along forest edges.

Understanding the interplay between the forest and human adaptive strategies is a critical tool for interpreting past lifeways. As part of the Greybull River Sustainable Ecology project (GRASEL) in northeastern Wyoming, students from Colorado State University located the remnants of a lodgepole pine forest and recorded the spatial and observable characteristics of these “ghost trees.” This information, combined with local dendrochronological data, fire history, and regional paleofaunal (invertebrate) paleoethnobotanical research, provides a visual representation of a changing prehistoric environment. These depictions of past forest landscapes, when incorporated into the archaeological record, offer insights not only how humans interacted with their woody neighbors but also how climate more generally may have influenced mobility and foraging patterns prehistorically.

Introduction
The present-day landscape of the Upper Greybull watershed in the area surrounding Jack Creek is typified by alpine meadows, patches of coniferous forests, ephemeral ponds, hummocky spring sources, and basalt cliffs that drop vertically into the Jack Creek river valley. Paleoecological studies as well as research during the 2005 field season hint at the complex climatological and ecological history of the region. The preponderance of archaeological lithic scatter across both landscape and time eludes to an equally complex relationship between human activity over at least the last 13,000 years in this montane environment. The reconstruction of paleoforests is critical for interpreting past human lifeways and artifact occurrence in relation to forest edges and ecotones.

Methods
• Using a Trimble GeoXT GPS unit, physical characteristics of ghost trees were recorded, including spatial location (UTM coordinates), diameter, height (stumps), length (“downtreen”), and presence of charcoal. As a GIS shapefile, orientation was implicit in the collection of the polylines data associated with downed trees. The following standards were observed:
 – Stumps or fallen trees whose roots were no longer imbedded in the ground surface were not considered in situ and therefore not recorded.
 – When an observable match could be made between a broken stump and a nearby fallen tree (approximately within 2 meters), the stump and the fallen tree were considered one polylines with demarcated vertices.
 – The length of a fallen tree included the “shadow” of the original fallen tree, i.e. a prominent linear impression left by an eroded trunk or visible tree detritus in a discernible line upon the ground.
• Ghost tree characteristics and spatial distribution were then compared to GIS data on artifact location, elevation, land cover, slope, and aspect.
• A charcoal sample was collected for radiocarbon analysis from the charred exterior of a standing-dead ghost tree in the study area.
• A second tree sample was collected for dendrochronology from a stump in the historic Jack Creek Cow Camp

Results

Sample 1: Charcoal collected from a live ghost tree.
Sample 2: Stump of a living ghost tree.

Figure 1: A shadow of its former self: the imprint of a ghost tree remains on the landscape long after the tree has fallen.

Figure 3: A shadow of its former self: the imprint of a ghost tree remains on the landscape long after the tree has fallen.

Figure 5: The land cover database from the US Geological Survey showing the distribution and priority of evergreen forests in the study area. There is a predominance of evergreen forest on north-facing slopes.

Figure 6: Ghost trees and tree samples shown in relation to archaeological sites in the Jack Creek area.

Landscape Taphonomy and Artifact Association
Recording the remains of an ancient forest offers tangible insight into shifting forest boundaries on a centennial and even decadal scale. Radiocarbon dating and dendrochronology can further enhance this story of past forest morphology. By mapping artifacts and ghost tree distribution with modern-day forest boundaries (Figure 7), a more complex pattern emerges. This pattern, however, may be more indicative of landscape taphonomy than of long-term vegetation change. In particular, the overwhelming majority of artifacts in the study area are located outside of both the modern-day forest and ghost tree boundaries, suggesting a possible link between artifact discovery and forested landscape. Alternatively, when slope is considered as a possible geomorphological influence on artifact location, no immediate relationship appears (Figure 8). Rather, a gentle southeast incline is observed across the artifact/ghost tree study area. Taken as a whole, artifacts and ancient forests represent related but discontinuous landscape attributes, each contributing to an understanding of paleoecological conditions.

Tree Sample Results
• A charcoal sample collected within the ghost tree study area (Figure 6) yielded a radiocarbon age of 330±50 BP (Beta-2090464), providing a likely tree death in the 1700’s and sprout initiation in the 1300’s (Figure 9).
• A cross-section of a tree stump was collected from the Jack Creek Cow Camp. The dendrochronological record indicates that the tree was 229 years old (+ 5 years, human error) establishing the origin of the tree to around 1776.

Figure 7: Artifacts and ghost trees, and modern forest distribution (A) (below). Figure 8: Using a Digital Elevation Model (DEM), points on southeast slope is depicted (right).

Figure 8: Using a Digital Elevation Model (DEM), points on southeast slope is depicted (right).

Figure 9: The charcoal age report for Tree Sample 1.

Conclusions
Forest edges, or ecotones, have been described as optimal places for both humans and mammals to make use of two distinct ecological communities. Patch size, especially near forest boundaries, may have also played an important role in past human land use (Kornfeld 2003). Variability in forest patchiness has been linked to global and regional oscillations in seasonal ice sheet extent, atmospheric carbon dioxide levels, topography (Figure 10), disturbance, and resource availability (Kornfeld 2003; Gillespie et al. 2004; Baker and Kirschfussler 2001). Lending credence to this argument, major shifts in biome position and area have been documented between 14,000 and 9,000 BP (Gillespie et al. 2004). More tantalizing yet for the paleoforest puzzle, packrat middens have recently yielded evidence that Ponderosa pine–abundant in the Jack Creek area today—were found only in southern Arizona 12,000 years ago, quickly spread northward, replacing limber pine in dominance and reaching Wyoming just 2,000 years ago (Norris, Jackson & Betancourt, in publication). Such findings support a complex story of paleoecological flux since the last glacial period. Evidence of human activity in the Jack Creek study area extends back at least 13,000 years and coincides with dramatic and possibly anomalous changes in the forested environment, reinforcing the need for archaeologists to consider how such ecosystems may have influenced past human lifeways.

Figure 10: When forest cover above and aspect are compared, a strong correlation is observed between forest and north-facing slopes.

Acknowledgments
The authors wish to acknowledge and thank the following individuals and organizations for their financial support and assistance:

• Colorado State University, Office of the Vice President for Research and IRTA, Office of the Graduate College, and College of Natural Resources

References