Beginning in 2002, and continuing during the 2003 field season, Colorado State University's Laboratory of Human Paleoecology has been conducting archaeological survey in Northwestern Wyoming's Washakie Wilderness (Shoshone National Forest). A central component of this project has been non-collection survey. In addition to the regulatory issues involved in collecting material from designated wilderness areas, there are several advantages and disadvantages to archaeological non-collection surveys:

ADVANTAGES OF NON-COLLECTION SURVEY
- Non-collection reduces (although does not eliminate) impacts to the archaeological record.
- Non-collection allows archaeological surveys to be replicated to assess accuracy and precision of our field methods.
- Non-collection provides baseline data against which impacts to the archaeological record can be measured and monitored.
- Non-collection survey maintains many contextual associations that even the most intensive documentation can not capture.

DISADVANTAGES TO NON-COLLECTION SURVEY
- It is difficult to conduct reanalysis and comparative artifact studies.
- The artifacts are not in secure settings and are prone to possible damage, destruction, or loss.

OVERCOMING THE DISADVANTAGES

- Building on an in-field coding system initially designed for use on the Nebraska National Forest near the Hobatere-Mung beam, we have developed a descriptive coding system that captures typological information on site, raw material type, artifact type and condition, dorsal surface, heat alteration, flake size, and weight.
- One person per crew has a handheld WAAS GPS unit used to record basic locational information.
- Each crew member has a hand-held KNEAD-A-MOLD® material, which is easy to transport, cures at room temperature, in about 3.5 hours, but artifacts could be removed from the molds and left in situ after 45 minutes to an hour.

ISSUES OF COMPARATIVE ANALYSIS

- During the 2003 season we began a pilot study to assess the feasibility of extending our ability to conduct comparative studies through a program on in-field mold making and subsequent casting of artifacts. We used a product KNEAD-A-MOLD®. This is a two-part silicone putty mold making system, which is easy to transport, cures at room temperature, in about 3.5 hours, but artifacts could be removed from the molds and left in situ after 45 minutes to an hour.

ARTIFACTS, CONTEXT, AND ADAPTIVE MANAGEMENT

- The need to invest greater amounts of field time to artifact documentation.
- The potential loss of information due to limited field time and sometime difficult field conditions often makes one hesitant to leave large numbers of particularly sensitive artifacts (e.g., projectile points) in unsecured site settings. As part of the Greybull River Impact Zone (GRIZ) project, we've begun an in-field documentation program that includes basic metric attributes, descriptive and macroscopic attributes, digital photography, and in 2003, in-field mold making so that casts of many of the artifacts can be produced for further study and/or display. Taken together these procedures give us the opportunity to "have our artifacts and leave them too."

STREAMING IN-FIELD DOCUMENTATION

- Provenience
 - One of the most fundamental attributes of archaeological documentation is provenience. We use a three-tiered system for recording locational information. First, static GPS units are used to set sub-cabinet control points. Second, these points are used for kinematic GPS sub-continent survey data for stations for KNEAD-A-MOLD® mapping. Third, each crew member has a handheld WAAS GPS unit used to record basic locational information.

- Descriptive Attributes
 - Building on an in-field coding system initially designed for use on the Nebraska National Forest near the Hobatere-Mung beam, we have developed a descriptive coding system that captures typological information on site, raw material type, artifact type and condition, dorsal surface, heat alteration, flake size, and weight. These attributes are recorded in 2003 in digital form into field GPS PDAs. A total of 64 PDAs were used in conjunction with an SD data card for file backup. Two person teams, each equipped with a pair of iPAQs, Garmin Rinos, and digital calipers, operated as a fully trained team is capable of documenting nearly 200 items per field day.

- Coding high elevation lithic reduction site
- Mapping and coding high-elevation lithic reduction site
- Mapping and coding hiking/high-elevation artifacts
- Mapping and coding high-elevation artifacts

ISSUES OF COMPARATIVE ANALYSIS

- While we share the concern for the physical safety of archaeological materials expressed by such comments, we also consider them to be a hindrance in several respects.
- We are convinced that collection of archaeological surface materials should be a method of last resort to be used only after all other options of in situ curation have been exhausted. The negative aspects of non-collection survey can be largely eliminated with a combination of clean-picks and innovated field methods. The potential long-term benefits of archaeological "catch and release" far outweigh the immediate costs.

ARCHAEOLOGICAL CATCH AND RELEASE: EXPANDING DATA CAPTURE FOR NON-COLLECTION SURVEY

L.C. Todd and P.C. Burnett

63rd Plains Anthropological Conference
October 2003, Fayetteville AK

Survey of Gold Reef mining district

DISADVANTAGES TO NON-COLLECTION SURVEY

- The need to invest greater amounts of field time to artifact documentation
- The potential loss of information due to limited field time and sometime difficult field conditions often makes one hesitant to leave large numbers of particularly sensitive artifacts (e.g., projectile points) in unsecured site settings. As part of the Greybull River Impact Zone (GRIZ) project, we've begun an in-field documentation program that includes basic metric attributes, descriptive and macroscopic attributes, digital photography, and in 2003, in-field mold making so that casts of many of the artifacts can be produced for further study and/or display. Taken together these procedures give us the opportunity to "have our artifacts and leave them too."

OVERCOMING THE DISADVANTAGES

- Building on an in-field coding system initially designed for use on the Nebraska National Forest near the Hobatere-Mung beam, we have developed a descriptive coding system that captures typological information on site, raw material type, artifact type and condition, dorsal surface, heat alteration, flake size, and weight. These attributes are recorded in 2003 in digital form into field GPS PDAs. A total of 64 PDAs were used in conjunction with an SD data card for file backup. Two person teams, each equipped with a pair of iPAQs, Garmin Rinos, and digital calipers, operated as a fully trained team is capable of documenting nearly 200 items per field day.

- Coding high elevation lithic reduction site
- Mapping and coding high-elevation artifacts

ISSUES OF COMPARATIVE ANALYSIS

- While we share the concern for the physical safety of archaeological materials expressed by such comments, we also consider them to be a hindrance in several respects.
- We are convinced that collection of archaeological surface materials should be a method of last resort to be used only after all other options of in situ curation have been exhausted. The negative aspects of non-collection survey can be largely eliminated with a combination of clean-picks and innovated field methods. The potential long-term benefits of archaeological "catch and release" far outweigh the immediate costs.

ARCHAEOLOGICAL CATCH AND RELEASE: EXPANDING DATA CAPTURE FOR NON-COLLECTION SURVEY

L.C. Todd and P.C. Burnett

63rd Plains Anthropological Conference
October 2003, Fayetteville AK

Survey of Gold Reef mining district

DISADVANTAGES TO NON-COLLECTION SURVEY

- The need to invest greater amounts of field time to artifact documentation
- The potential loss of information due to limited field time and sometime difficult field conditions often makes one hesitant to leave large numbers of particularly sensitive artifacts (e.g., projectile points) in unsecured site settings. As part of the Greybull River Impact Zone (GRIZ) project, we've begun an in-field documentation program that includes basic metric attributes, descriptive and macroscopic attributes, digital photography, and in 2003, in-field mold making so that casts of many of the artifacts can be produced for further study and/or display. Taken together these procedures give us the opportunity to "have our artifacts and leave them too."

OVERCOMING THE DISADVANTAGES

- Building on an in-field coding system initially designed for use on the Nebraska National Forest near the Hobatere-Mung beam, we have developed a descriptive coding system that captures typological information on site, raw material type, artifact type and condition, dorsal surface, heat alteration, flake size, and weight. These attributes are recorded in 2003 in digital form into field GPS PDAs. A total of 64 PDAs were used in conjunction with an SD data card for file backup. Two person teams, each equipped with a pair of iPAQs, Garmin Rinos, and digital calipers, operated as a fully trained team is capable of documenting nearly 200 items per field day.

- Coding high elevation lithic reduction site
- Mapping and coding high-elevation artifacts

ISSUES OF COMPARATIVE ANALYSIS

- While we share the concern for the physical safety of archaeological materials expressed by such comments, we also consider them to be a hindrance in several respects.
- We are convinced that collection of archaeological surface materials should be a method of last resort to be used only after all other options of in situ curation have been exhausted. The negative aspects of non-collection survey can be largely eliminated with a combination of clean-picks and innovated field methods. The potential long-term benefits of archaeological "catch and release" far outweigh the immediate costs.